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The problem of the unsteadjr motion of a visco-plastic body has attracted 

for some time the attention of rtisearch workers [l-31. The analysis of 

available exact and approximate solutions of unsteady problems has been 

given in a monograph by Mirzadzhanzade [‘II. 

In this paper a formulation and effective approximate solution will 

be given of the problem concerning the impact on the rigid obstacle of a 

visco-plastic bar of finite length. The problem of the elasto-plastic 

impact of a bar on a solid obstacle was considered by Lenskii [5]. 

1. Formulation of the problem. A bar of finite leq;th, consist- 

ing of visco-plastic incolnpressible material, is translated in the 

direction of its longitudinal axis and with an initial velocity - Us at 

time t = 0 strikes a solid obstacle (Fig. 1). 
2 
7 

Ye assume that the motion of the bar is almost - , 

uniform, i. e the stress, the velocity, etc., are 

given as the average value over the section of 
0 

f 
the bar. 

In the given case the relation between the , 

values, averaged over the cross-section, of the 
x,/t) 

stress CJ and the velocity of deformation &J,‘~.x i 1 

in the visco-plastic medium are given by 
Fig. 1. 

where u(n, t) is tile velocity of tile section of the bar at til,:e t; aa > 0 

is the stress at tlie lir.lit Ijoint; 1) is tile coefficient of tile viscosity 
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of the materials of the bar, and the coordinate x is directed along the 

axis of the bar.and is oriented opposite to the direction of the motion; 

clearly, o Q 0 at all points. 

2hysically it is evident that the pattern of motion has the following 

form. Taking into account that the propagation velocity of the elastic 

tlisturbance iI1 the considered medium is very lar;;e, because the Your&s 

rno+lulus of that medium is large, the disturbance ta!ies place almost 

instantaneously over the whole bar. TIlen, the velocity of the motion for 

an arbitrary t > 3 differs from - r0 at all points of the bar. 

The,bar will be divided into two parts. In one part (0 <<x < x,(t)), 

which can be called the visco-plastic region, the stresses exceed crO and 

visco-plastic flow is obtained. In the second part (n,(t) < x < 2) which 

we call the elastic (rigid) region the stress is less than cr,, so that 

this part of the bar is moving as a rigid 

between the visco-plastic and the elastic 

has to be determined in the course of the 

and velocity are continuous. 

body. 0n the movini boundary 

part x = x,(t), whose position 

solution of problem, stress 

The fundamental equation of motion has 

au ao 

the following form 

Pat=== (1.2) 

where p is the density of the material of the bar, which we assume to be 

constant; t is time. Then, by virtue of Equation (1.1) in the visco- 

plastic region the velocity satisfies the heat equation 

and in the elastic region the equation 

& 0 
z-= (i1.u (1) < 1: 5 1) (1.4) 

After integrating Equation (1.4), it follows 

U = -z&(t) (x0((t) <xs0 (1.5) 

where - v,(t) represents the motion of the elastic region of the bar, 

which is an unknown function of time. 

Squation of motion in the elastic region is given by 

fl.6) 

where i,f is the mass of the elastic part of the bar and F, is the area of 

the cross-section of t!le !)ar. 
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Taking into account that the stress on the moving boundary, x = x,(t), 

is continuous, the relation (1.5) leads to 

d-u,(t) GJ 
-dt==- 

_- 
p Ii - 20 (t!l 

(1.7) 

Furthermore, by virtue of the continuity of the velocity on the moving 

boundary, x = x,(t), we have 

u 1% (L), t1 = - Q(t), G&T 2' [5"(t), t] = 0 (1.8) 

The boundary and initial conditions are given by 
(1.9) 

c(O,t)=O @>O), 2.'(2,0)----_2;0 (0 <Z < 1); 2'0 (0) = 2'0, X,(O) = 0 

Thus, the problem is reduced to the determination of the functions 

v(n, .t); v,(t) and x,(t), satisfying Equations (1.31, (l.?), (1.R) and 

(1.9). 

2. ?he system of fundamental equations in dimensionless 
form. 'Ike study of impact of a visco-plastic bar on a solid body is re- 
duced to the problem of heat conduction with a moving boundary, which is 

not reducible to the traditional boundary value problems of mathenlatical 

physics. 

It is convenient to use the dimensionless quantities, namely 
(2.lj 

Then from Equations 

t E = 2. I’ 0% 5 ( ) t;; ?!a 
1 ’ 

z = Y,f!- p f &(Z) ;_ ?g!- 

(1.3), (1.7) to (1.9) one obtains the system of re- 

lations for determination of the unknown functions nf<, T), Ejofs>, u,(r) 

fiere s = uOl/~u, is Saint Venant's parameter, which is the dimension- 

less combination of the known parameters and wl-A.& characterized the 

motion. 

3. Approximate solution. For an approximate solution of the 
system (2.3) to (?..I.) the method for the boundary layer [61 given by 
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von Karman and Pohlhausen will be used; namely we represent the function 

u(<, T) approximately in the form* 

I 2240 (t) - 6 -Uo(T)-!2- 
u (E, 7) = 

Eo (t) E3 (T) 
(0 G E < Eo (%I) 

\ 

(3.1) 
‘4 (7) (Eo (Q < E < 1) 

If the functions ~~(1) and g,,(-r) satisfy the last two conditions of 

(2.4), then (3.1) satisfies all conditions of (2.4). obviously, the 

function (3.1) does not satisfy Equation (2.2) exactly; it will be neces- 

sary that it satisfies the integral relation which follows from the 

quadrature of Equation (2.2) over the entire visco-plastic region, 

(0 << Q tO(-r)). IJsing integration by parts, and taking into account 

(2.4) we have 

Finally, we obtain the integral relation in the form 

Eo (7) 
d 

dz \ u(~,T)dE--o(~)d~=--(~,,_o 

ti 

By virtue of (3.1) we have 

(3.2) 

E. CT) 

s u ,(E, r) 4 = + uo (Q Eo CT), 
2uo (t) (E): __ = - 

,-0 Eo CT) 
0 

Substituting (3.3) in (3.2) and using (2.3) we obtain 

(3.3) 

(3.4, 

From the system of Equations (3.4) and (2.3) and using the condition 

(2.5) we can determine the functions ~~(1) and C,,(T); and then an 

approximate solution of the problem under consideration will be obtained. 

It is convenient to introduce new dependent variables 

/, ~_~~ .r,,(r) ) 
8 ‘/ == k,,‘(T) (3.3) 

l This approximation coincides with that of the averaging method given 

by Slezkin-Targa [71 . 
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Then, the system (3.4) and (2.3) takes the form 

(3.6) 

This system does not contain Saint Venant’s parameter s. Consequently, 

the initial conditions are 

P(O) = f , 4 03 = 0 (3.7 

Dividing the first of Equations (3.6) by the second one, it follows 

d2 _ 
dp 

- - 12 (I- Vi) $ $ (3.8) 

Oualitative axaminati on of t.lli s emlat.inn i R el ement.arv 
L--~-- -~--- -..-..- . - ____ -- - ___- 

--l------- -- -----------, . The region 

(p > 0, 0 < q < 1) of the integral curves given in Fig. 2 represents the 

solution under consideration. At the origin of the coordinate system 

there is a singular point of the 

nodal type. The integral curves ema- 

nate from the origin and have a 

tangent, 7 = 4p; in the neighborhood 

of the origin the integral curves 

satisfy the relation 

Fig. 2. The line of separation divides 

the integral curves which are emanat- 

ing from the origin into two classes: the curves of Class 1 are 1 nracter- 

ized by the increasing of the ordinate q to a certain maximum, less than 

unity, which is on the curve p = 17/3( 1 - \1 q); further, they turn toward 

the abscissa intersecting it at finite points at the same angle. 

In the case of integral curves of Class 2 the ordinate increases con- 

tinuously, so that the curves of that class intersect the line 7 = 1 and 

in region (p > 0; 0 < 4 < 1) do not return to the p-axis. Thus, the 

curves of that class do not intersect the p-axis at finite points. 

By virtue of the initial conditions (3.7) the curves of Class 1 repre- 

sent the solution of the problem; the direction of the motion for points 

along the integral curves with increasing time is indicated in Fig. 3 by 

the arrows. 

4. Approximate representation of the solution for larger 
values of Saint Venant's parameter. Form of the bar after 
impact. From above examination the following qualitative deduction 
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Fig. 3. Fig. 4. 

follows. At the beginning of motion the visco-plastic region is extending; 

its size CO(~) =\I(Q(T)) increases, reaching its maximum at T = T,,(S) 

(Fig. 3), and then decreases. At a certain time T = TV the visco- 

plastic region vanishes; this instant corresponds to zero value of the 

velocity L+,(T) of the elastic part of the bar (Fig. 4)) so that the 

motion of the bar is completely stopped. ‘Ihus, in all cases a definite 

part of the bar joining the free boundary remains undeformed. 

For a small value of T the asymptotic representation of the basic 

characteristic of motion has the form 

Eo (q = m -t 0 (l/z), ug (z) = 1 - sz (4.i) 

For T close to T1, the characteristics of motion are 

% R-l ho@) = 2 v/z, -T + o (v~r - z), no (T) = s (z, - z‘) (4.2) 

In the general case the system (3.6) requires numerical 

integration for its solution. The results 

of integration for a few values of Saint 

Venant’s parameter are plotted in Figs. 

3-5. 

0 5 

Fig. 5. 

In the case of very large s, the so- 

.n lution can be written in explicit form. 
Ii/ 

In fact, in that case, during the com- 

plete motion q is very small, so that we 

can neglect J7 as compared to unity, on 

the system given by Equation (3.6). After that, 

(3.6) satisfying the conditions (3.7) can be 

explicit form, namely 

the right-hand side of 

the solution of system 

imnediately written in 
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In order that the solution (4,.3) be applicable it is necessary that 

(1 - Jg) differs not more from unity than, for instance, 0.1. A simple 

calculation shows that for such purpose s should be 

larger than 200. Ihis method of calculation can be 

made more precise without any essential complication. 

Te replace on the right-hand side of Equa- 

tion (3.6) the factor (1 - dq)-' by a and 

we consider a as an undetermined constant. 

It is very easy to see that here the solu- 

tion of Equation (3.6) satisfying the con- 

dition (3.7) can be written as 

I I y-;-J Q’/‘{@-~)-$A(P-v}~ 
Ie IO 

Fig. 6. Tl =P, 

NOW, it is necessary to establish the relation between a 

p=p-z 

(4.4) 

and the 

parameter s; or, which is the same, to find the relation p = F(s). If 

the function F(s) is known, then Formula (4.4) gives the approximate 

solution, where the most interesting parameters - the greatest magnitude 

of the visco-plastic region 4,,*, and the duration of the motion -rl - are 

determined by 

1.37 go* r - 

I/iii __ 
= 1.37V/F(s), z, = ; = F(s) (4.5) 

Thus a can be taken to be equal to the average of (1 - 47)-l during 

the entire interval of motion. Here, the function 9 z.';,(s) is &fined 

implicitly by 

The plot of the function ;1 = Ff ) ’ 
ILS 1s i_:iven in I'ic:. 6. I‘or explicit 

analytical representation of the solution, which is sufficiently exact, 

we can set the constant a equal to [l - (4 *y~l-~, where (J 7) denotes the 

average value of 47 durinl; motion. Tb virtue of (4.2) we 

l-(l/~_I_~~I/(P_r)--?-l(l-r)Ldr~ 

0 

=~_ 1 _ 21‘ W) r (l/2) 

3r (2) 
‘v a-_ 1 - 1 .o;, J/q3 --: -; = .$j 
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Ilence, the function p = F,(s) is determined in final form 

The approximate formula is sufficiently exact 

already for about s > 2. 

?Jow we determine the form of the bar 

after impact. From the condition of the 

incompressibility of the material we 

have 
a 0.5 1.0 

F = F, (1 -+- g)-’ (4B) 

Fig. ‘7. 

w:lere F = F(x) is the cross-section of 

the deformed bar; U is the instantaneous longitudinal displacement and 

Fll is the cross-section of the undeformed bar. At the end of the impact, 

t = tl, we have for an arbitrary section x 

11 
au t** _w T** (i) 

* -_= 
\ 
’ au ‘d”; t, dt = \ av’k t, dt == _ ,. \ 

8.c . 
au $i t, dr 

n t, (X) T,‘(E) 

ct** (xl > t* (x)) (4.11) 

Here t*(x) and t**(x) are t!le roots of the equation x = x,(t); -r*(g) 

and T**(<) are the corresponding dimensionless quantities; r = pvOZ/w is 

the Reynolds number. 

Ry virtue of (3.1) and (4.9) we find 

au 
T*t (Si 

z= -zJ. . 
\ 

w(t) IEn (z) - El dt F- Fn 
z - 

:*;I) 
E,” (7) 

___ = - 2rf(E) 
F 

(4. IO) 

Figure 7 shows, for different values of Saint Venant’s parameter s, 

the graph f(t) which characterizes the varying form of the bar after 

impact. 
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